以下函数均可导:
和差的导数(微分)
[u(x)±v(x)]’=u’(x)±v’(x)
d[u(x)±v(x)]=d[u(x)]±d[v(x)]
正常加减运算即可
积的导数(微分)
[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x)
d[u(x)v(x)]=u(x)d[v(x)]+v(x)d[u(x)]
前导后不导 + 后导前不导
三个因式的情况
[u(x)v(x)w(x)]’=u’(x)v(x)w(x)+u(x)v’(x)w(x)+u(x)v(x)w’(x)
一人一巴掌。若因式超过三个则另想方法。
商的导数(微分)
v(x)=0
[v(x)u(x)]’=(u(x)v(x)1)’=u’(x)v(x)1+u(x)(−[v(x)]21)v’(x)
除法看作乘法,使用复合函数求导。整理结果得:
[v(x)u(x)]’=[v(x)]2u’(x)v(x)−u(x)v’(x)
d[v(x)u(x)]=[v(x)]2v(x)d[u(x)]−u(x)d[v(x)]