- (xα)’=αxα−1
- (αx)’=αxlnα (α>0,α=1)
- (ex)’=ex
- (logαx)’=xlnα1 (α>0,α=1)
- (ln∣x∣)’=x1 (x=0)
- (sinx)’=cosx
- (cosx)’=−sinx
- (arcsinx)′=1−x21
- (arccosx)’=−1−x21
- (tanx)’=sec2x
- (cotx)’=−csc2x
- (arctanx)’=1+x21
- (arccotx)’=−1+x21
- (secx)’=secxtanx
- (cscx)’=−cscxcotx
- [ln(x+x2+1)]’=x2+11
- [ln(x+x2−1)]’=x2−11
- (arctan1−x1+x)′=1+x21